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A generalized plane strain technique for estimating 
effective properties of particulate metal matrix 
composites using FEIV! 

N. RAMAKRISHNAN,  A. M. KUMAR, B. V. RADHAKRISHNA BHAT 
Computer Simulation Centre, Defence Metallurgical Research Laboratory, Kanchanbagh 
P.O,, Hyderabad 500 058, India 

A procedure to estimate the effective elastic moduli and coefficient of thermal expansion 
(CTE) of particulate-reinforced metal matrix composites (MMCs) using a two-dimensional 
finite element method is presented. The actual microstructural geometry of the composites 
with randomly distributed second-phase particles is incorporated in the model. 
A generalized plane strain technique, realistically to describe the three-dimensional 
behaviour, is also incorporated in the model. The elastic moduli and the CTE, estimated 
using this model, agree favourably with the experimental data. The technique is shown to be 
superior compared to the conventional two-dimensional plane stress and plane strain 
approximations. Also, the results indicate that the effect of the shape of the randomly 
distributed second-phase particles on the effective elastic moduli is insignificant. Although 
the procedure is demonstrated for particulate MMCs, it can be easily extended to many other 
materials as well. 

1. Introduction 
A number of studies, both analytical and numerical, 
have been reported in the literature for estimating the 
effective properties of multiphase composites in terms 
of size, shape, volume fraction and distribution of the 
constituent phases. Hashin [1] and Hashin and 
Shtrikman [2] developed a composite sphere model 
with which they derived the effective bulk modulus 
and bounds for the effective shear modulus. Hill [3] 
and Budiansky [4] independently presented a self- 
consistent model. Zimmerman [5] obtained the effec- 
tive moduli of a matrix containing rigid inclusions 
based on the differential method established by Norris 
[6] and McLaughlin [7]. Mori and Tanaka [-8] intro- 
duced an eigen strain method which was later im- 
proved by Benvensite [9]. Wu [10] generalized the 
self-consistent model for ellipsoidal inclusions. The 
majority of the analytical methods available today are 
only variants of the above models and a comprehens- 
ive overview is presented by Christensen [11]. Al- 
though the analytical models are attractive because 
they offer better physical insight, any attempt to ex- 
tend them to complex geometries invariably leads to 
mathematical intractability. 

Many of the numerical models [12-20] published 
so far, although FEM based, are restricted to unit-cell 
approaches in which the real structure is approxim- 
ated to a periodic array of certain regular geometries. 
In the case of composites of aligned fibres this assump- 
tion can be considered reasonable. However, these 
models are not valid when the spatial and the size 
distribution of the reinforcement are random, as in 

particulate composites. In this context, we present 
a finite element-based numerical model that incorpor- 
ates the complexities associated with the spatial and 
size distribution of the second phase and demonstrate 
the use of the model in estimating the effective elastic 
properties of particulate-reinforced metal matrix com- 
posites (MMCs). In this paper, we describe the 
method, specifically illustrating its use in determining 
the effective elastic modulus and the coefficient of 
thermal expansion. 

2. Finite element model (FEM) 
In this section, we describe the finite element model 
where we consider typical microstructural geometries 
of particulate MMCs with spherical as well as angular 
reinforcements distributed randomly. Also, we intro- 
duce a type of generalized plane strain method to treat 
the three-dimensional deformation by means of a two- 
dimensional approximation. 

2.1. Geometrical characterization 
Representative cross-sectional micrographs of a typi- 
cal MMC reinforced with 20% volume fraction of 
circular and angular second-phase geometries are 
shown in Fig. la and b, respectively. In order to ensure 
a spatial random distribution, we employ the follow- 
ing procedure: it is well known that a perfectly 
random distribution of the second phase results in 
identical area and volume fractions. Here, we use the 
converse of this principle to establish the random 
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Figure 1 Representative cross-sectional micrographs of a typical 
MMC reinforced with 20% volume fraction of (a) circular and (b) 
angular particles. 

distribution of the second phase. Initially, the second- 
phase particles are positioned at different locations in 
the matrix such that they appear random on a simple 
visual examination. Subsequently, this two-dimen- 
sional geometry is rotated about the X and Y axes to 
generate cylindrical volumes with toroidal second- 
phase particles and the volume fractions are com- 
puted. These volume fractions are compared with the 
area fraction and, depending on the difference, the 
second-phase particles are relocated in the matrix so 
as to reduce this difference to nearly zero. The re- 
positioning is continued until the difference is reduced 
below a permissible level, which we chose to be 1%. 

2.2. Mesh discretization 
In order to generate the finite element grids corres- 
ponding to different volume fractions, as well as 
shapes of the second-phase particles, we use the 
master mesh concept outlined elsewhere [21, 22]. The 
master mesh, shown in Fig. 2, comprises constant 
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Figure 2 Master mesh for generating various microstructural mor- 
phologies. 

strain triangular and quadrilateral elements. A variety 
of microstructural morphologies can easily be 
modelled using the master mesh by assigning the 
material properties of the second phase to selected 
elements. The matrix material properties are then as- 
signed to the remaining elements. Using this proced- 
ure, the shape of the second phase, as well as its 
volume fraction, can be altered easily. 

2.3. Boundary conditions 
The estimation of the effective moduli involves deter- 
mining the elastic response of the composite to ex- 
ternally applied loads which is accomplished by the 
following boundary conditions. The nodes along the 
bottom edge of the mesh (side 1 in Fig. 2) are fixed in 
the Y direction but allowed to move in the X direc- 
tion. The nodes falling on the left edge of the mesh 
(side 4) are fixed in the X direction and are left free to 
move in the Y direction. A load is then applied to the 
mesh in the Y direction by displacing the nodes along 
the top edge of the mesh (side 3). Only small displace- 
ments are prescribed to avoid the onset of geometric 
and material non-linearities. This is necessary to en- 
sure an accurate determination of the elastic modulus. 
The mesh is loaded specifically using the displace- 
ment-boundary conditions instead of fo rc~boundary  
conditions to avoid numerically induced surface un- 
evenness. For each of the volume fractions considered, 
the analysis is repeated for X-directional loading as 
well. The effective Young's modulus is then computed 
as the average of the two cases, that is, X and Y load- 
ing conditions. This is done in view of the small 
difference in the X and Y generated volume fractions. 
The effective bulk modulus, on the other hand, is 
computed by applying pressure in both X and Y di- 
rections simultaneously, using displacement boundary 
conditions as before. Independently computing the 
effective bulk modulus may appear to be a redundant 
step because one can obtain both the effective Young's 
modulus and the Poisson's ratio at the same time. 
However, we find the numerically induced error to be 
significant if we determine the Poisson's ratio by this 



procedure. This aspect is discussed in Section 3.1 in 
detail. It is immaterial whether the loading is tensile or 
compressive and in this study we have chosen to 
impose compressive boundary conditions. 

For  determining the effective coefficient of thermal 
expansion, a small increase of temperature is imposed 
on all the elements, and the overall expansion of the 
composite is measured for the given CTEs of the 
individual phases. This is done with side-1 constrained 
in the y direction and side-4 constrained in the X di- 
rection to ensure the stability of the system. 

2.3. 1. The generalized plane strain method 
The FEM analysis of particulate-reinforced com- 
posites should strictly be three-dimensional. However, 
any three-dimensional analysis, in addition to being 
cumbersome, demands large computing resources. On 
the other hand, two-dimensional approximations such 
as plane strain or plane stress, are inadequate. As a com- 
promise, we introduce a generalized plane strain method. 

It is known that the plane strain or the plane stress 
deformation is modelled by setting the strain or the 
stress in the Z-direction to zero. In generalized plane 
strain methods, a definite Z-directional strain is im- 
posed and the Z-strain is chosen depending on the 
application. In our case, the magnitude and the sign of 
the Z-strain at any location of a particular constituent 
phase are forced to be the same as the average strain 
of that phase in the lateral direction. That is, the 
Z-directional strain in the ith phase for the loading in 
the Y-direction is 

(ez)i = g=l (1) 

j - 1  

where n is the total number of elements representing 
the ith phase. In this method, in addition, the out-of- 
plane shear stress and strain terms are ignored, similar 
to the plane stress and the plane strain approxima- 
tions. The algebraic details regarding the reduction of 
the three-dimensional constitutive matrix to the gen- 
eralized plane strain matrix are provided in the Ap- 
pendix. 

If a homogeneous and isotropic material is loaded 
uniaxially, it produces identical lateral strains. Sim- 
ilarly, any composite which is statistically homogene- 
ous and isotropic will also produce equal lateral glo- 
bal strains, even though the strain at any particular 
location depends on the microstructural morphology 
and the elastic properties of the constituent phases. 
The present generalized plane strain method forces the 
average strain in one lateral direction to be the same 
as that in the other lateral direction for each con- 
stituent phase independently. This not only ensures 
the lateral strains to be the same at the global level but 
also allows the Z-strain to be different for different 
phases depending on their elastic moduli. In the limit- 
ing case of the second-phase volume fraction ap- 
proaching zero, the generalized plane strain ap- 
proaches the plane stress condition. 

2.25 

2.00 

1.75 

~o 
--- 1.50 
u.i 

1.25 

1.00 

0.75 
0.0( 

/-" 

/ "  o 
j.."*" 

..'"" Z 
/" / 

Y "  I 

g i I 

i i i i 

0.10 0.20 0.30 0.40 0.50 

Volume  fraction 

Figure 3 Comparison of ( - - )  the generalized plane strain esti- 
mates of the effective Young's modulus with (. - -) plane strain, (- - -) 
plane stress results and experimental data ([~) [26], (O) [271. 

2.4. Material properties [23-251 
Young's modulus, Poisson's ratio and CTE of the 
matrix (7075-T6 aluminium alloy) are 69 GPa, 0.33 
and 23.4x 10-6/~ whereas for the second phase 
(SiC particulate) these are 460GPa, 0.18 and 
4.7 x 10 6/~ respectively. 

3. Results and discussion 
The results of the model are compared with some of 
the experimental data 1-26, 27] as well as the analytical 
ones. 

3.1. Effect of boundary conditions 
The effective Young's modulus is computed as the 
ratio of the average stress over the cross-section of the 
grid to the average applied strain. The modulus is 
normalized with respect to the matrix elastic modulus, 
Eo, and then plotted as a function of the volume 
fraction of the second phase for circular particle geo- 
metry as shown in Fig. 3. In this figure, the results of 
the generalized plane strain method are compared 
with those of the plane stress and the plane strain 
methods as well as the experimental data. The experi- 
mental data and the generalized plane strain estimates 
of our model fall in between the plane stress and the 
plane strain values. This is expected because the plane 
stress and the plane strain assumptions constitute two 
extremes in approximating the three-dimensional de- 
formation. The results show that the generalized plane 
strain technique yields better estimates of the effective 
Young's modulus than the conventional plane stress 
or plane strain approximations. 

The effective Poisson's ratio is computed by two 
different methods. In the first method, a uniaxial strain 
is applied to the finite element mesh and the Poisson's 
ratio is directly calculated as the ratio of the average 
lateral strain to the applied axial strain and the effec- 
tive Young's modulus as the ratio of the average stress 
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Figure 4 Variation of the Poisson's ratio with volume fraction of 
angular second-phase particles computed by two different methods: 
(*) average strains, (0 )  effective bulk modulus. 
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Figure 5 Comparison of ( ) the generalized plane strain esti- 
mates of the effective coefficient of thermal expansion with (. �9 .) 
plane strain, (---) plane stress results and (O) experimental data. 

to the applied strain. In the second method, a bi- 
axial compression in the X and Y directions is applied 
to the grid. The generalized plane strain method con- 
verts the biaxial compression into a three-dimensional 
hydrostatic compression by forcing the Z-strain to 
equal the X or Y strains for each phase. In this case, 
the bulk modulus is computed as the ratio of the 
hydrostatic stress to the volumetric strain. Sub- 
sequently, the Poisson's ratio is determined using the 
Young's modulus of the first method and the bulk 
modulus, The Poisson's ratios thus obtained using 
these two methods are shown in Fig. 4. The results 
indicate that the Poisson's ratio values computed us- 
ing the first method show an erratic variation, whereas 
those of the second method exhibit negligible scatter. 
This, we feel, is due to the better numerical stability 
owing to the additional kinematic constraints im- 
posed in the second method. Therefore, the second 
method is recommended for a more accurate deter- 
mination of the effective Poisson's ratio, although it 
involves two steps. 

The effective CTE of the composite is shown in 
Fig. 5. The experimental results agree favourably 
with the results of the generalized plane strain 
method. In contrast to the case of the effective elastic 
modulus, here the experimental results are close to 
the plane stress curve and the results of the gene- 
ralized plane strain technique obey this trend 
as well. 

3.2. Effect of particle shape 
The results indicate negligible dependence of the effec- 
tive moduli on the shape of the second-phase particles. 
This is illustrated in Fig. 6 where the bulk and the 
shear moduli are plotted for the cases of circular and 
angular particles. The average difference in the effec- 
tive modulus for these two cases is less than 1%. 
Nevertheless, we found a significant difference in the 
stress distribution between the circular and the angu- 
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Figure 6 Effect of particle shape on the effective bulk and shear 
moduli for (O) circular and (El) angular particles. 

lar particle geometries for the same loading condi- 
tions. While the stress gradients are steep adjacent to 
the sharp corners of the angular particles, these are 
less pronounced around the circular particles. How- 
ever, interestingly, the average stresses in both the 
cases are close to each other, which is a result of the 
random orientation and distribution of the second- 
phase particles. Therefore, we conclude that the shape 
of the particles has little effect on the elastic moduli, 
provided the structure is statistically homogeneous 
and isotropic with a perfectly bonded [28] particle 
matrix interface. On the other hand, the unit-cell 
models may predict an effect of the shape on the 
elastic moduli because the periodic array of the unit 
cells does not correspond to statistically isotropic 
conditions. 
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Figure 7 Comparison of ( -  ) the generalized plane strain esti- 
mates with a few analytical estimates: ( - - - )  composite sphere 
method, ( -)  differential method, ( . . . )  self-consistent method. 

3.3. C o m p a r i s o n  with analy t ica l  m o d e l s  
The FEM results are now validated with those of the 
composite sphere method [1, 2], the self-consistent 
method [3, 4] and the differential method [5 7], as 
shown in Fig. 7. This model is much more general 
compared to the analytical procedures and has 
a much wider applicability although, in this study, we 
have restricted ourselves to only the elastic moduli 
and CTE of particulate-reinforced MMCs. In contrast 
to the well-explored analytical methods, this tech- 
nique is still in its early stages and thus offers a novel 
way of studying complex microstructural geometries. 
For example, the introduction of a particular type of 
shape, spatial and orientation distribution or cluster- 
ing, is a simple extension of the present model which 
cannot be easily incorporated in any of the analytical 
methods. In addition, geometrical and material com- 
plexities such as non-linearity, etc., can also be easily 
incorporated in this method. 

3.4. Limitations 
Currently, the main limitation of the present model is 
that the particle-matrix interface is assumed to be 
perfectly bonded. Introducing the interfaces essential- 
ly involves finer discretization at the particle bound- 
aries and this results in a prohibitively large problem 
size. More importantly, a rigorous description of the 
interface for the purposes of incorporation in the 
FEM procedures is still not available. 

4. Conclusion 
A general finite element model that describes elastic 
deformation of the real microstructares is presented 
specifically illustrating its use in determining the effec- 
tive elastic moduli and coefficient of thermal expan- 
sion of particulate MMCs. The model takes into ac- 
count the parameters such as spatial distribution, 

shape and volume fraction of the second phase with 
least idealizations. A master mesh concept is used for 
generating a variety of microstructural morphologies. 
A generalized plane strain approach is proposed and 
verified using available experimental results. The pre- 
dicted elastic moduli and the coefficient of thermal 
expansion compare well with those from the published 
experimental data, as well as a few analytical estimates. 
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Appendix 
The three-dimensional linear elastic constitutive equa- 
tion, with the out-of-plane shear terms ignored, is 

ao-,~=|C2, C= C2s C24|~ asy-a8 ~ 

/ /<, qd/as=-As~ L<, C42 C43 c diaYx,-aGJ 
(A1) 

where Aa and A8 are incremental normal stress and 
strain components, and Az and A7 are shear compo- 
nents. In the case of the generalized plane strain condi- 
tion, we impose 

ksz'= 8" (A2) 

where 8* has a definite value depending on the ap- 
plication. Substituting Equation A2 into Equation A1, 
we get 

~ ; ;  rCll C 1 2  C14]I ASx ) 
=It2, C= qd/As, I 

+ 
( - -  @x -~- C 1 3 8 " )  

( - -  ~/ty 5 r- C 2 3 8 "  ) 

( - ~ ,~  + C~38") 

(A3) 

where 

F 
L <,  c@,%j 

(A4) 

When 8" = 0, the equation reduces to the plane strain 
method. 
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